diffsph.spectra package¶
Submodules¶
diffsph.spectra.analytics module¶
- diffsph.spectra.analytics.Fav(x)¶
Synchrotron-power function for randomly-oriented magnetic fields [*].
\[F(x) = x^2 \left(K_{4/3}(x) K_{1/3}(x) - \frac35 x [K_{4/3}^2(x) - K_{1/3}^2(x)]\right)\]- Returns:
Pitch-angle averaged synchrotron function as a function of \(x\)
- diffsph.spectra.analytics.M_C(xi, eta, delta)¶
Master function in the Regime-C limit
\[\mathcal M_C(\xi,\eta,\delta) = \frac{\xi^\delta}{(1-\delta)\eta} F(\xi^2)\]
- diffsph.spectra.analytics.M_i(xi, eta, delta)¶
Master function in the large \(\eta\) limit
\[\mathcal M_i(\xi,\eta,\delta) = \frac{\Gamma^2(1/3)\eta^{-\frac{5}{3(1-\delta)}}}{5\sqrt[3]{2}(1-\delta)}\Gamma\left(\frac{5}{3(1-\delta)},\eta\, \xi^{1 - \delta}\right)\exp\left(\eta\, \xi^{1-\delta}\right)\]
- diffsph.spectra.analytics.M_raw(xi, eta, delta)¶
“Raw” master function
\[\mathcal M(\xi,\eta,\delta) = \int_\xi^\infty dx F(x^2)\exp\left(-\eta\,[x^{1-\delta}-\xi^{1-\delta}]\right)\]- Returns:
above integral
- diffsph.spectra.analytics.anltc_Mst(xi, eta, delta)¶
Master function
\[\mathcal M(\xi,\eta,\delta) = \int_\xi^\infty dx F(x^2)\exp\left(-\eta\,[x^{1-\delta}-\xi^{1-\delta}]\right)\]Note
Function evaluates the above integral only for those values where no numerical errors are present. Otherwise, it uses the approximate formulas
diffsph.spectra.analytics.M_C()
ordiffsph.spectra.analytics.M_i()
- diffsph.spectra.analytics.btot(E, B)¶
Total energy loss function in GeV/s
- Parameters:
E – cosmic-ray energy in GeV
B – magnitude of the magnetic field’s smooth component in \(\mu\)G
- Returns:
energy-loss rate in GeV/s
- diffsph.spectra.analytics.lam(E, B, D0, delta=0.3333333333333333)¶
Syrovatskii variable in kpc2
- Parameters:
E – cosmic-ray energy in GeV
B – magnitude of the magnetic field’s smooth component in \(\mu\)G
D0 – magnitude of the diffusion coefficient for a 1 GeV CRE in cm2/s
delta – power-law exponent of the diffusion coefficient as a function of the CRE’s energy (default value = 1/3)
- Returns:
Syrovatskii variable in kpc2
diffsph.spectra.synchrotron module¶
- diffsph.spectra.synchrotron.Enu(B, nu)¶
Typical particle energy in GeV for synchrotron radiation at the frequency nu in GHz and for a magnetic field B in \(\mu\)G
- Parameters:
B – magnitude of the magnetic field’s smooth component in \(\mu\)G
nu – frequency in GHz
- Returns:
Particle energy in GeV.
- diffsph.spectra.synchrotron.Mst(xi, eta, delta)¶
Interpolation function for the kernel function \(\hat{\mathcal M}(\xi,\eta,\delta)\)
- Parameters:
xi – \(\xi\)
eta – \(\eta\)
delta – \(\delta\)
- Returns:
Spectral-function kernel (as an interpolation function)
- diffsph.spectra.synchrotron.Mst_DM(xi, eta, m, delta, channel)¶
Master function for dark-matter hypotheses
- Parameters:
xi – \(\xi\)
eta – \(\eta\)
delta – \(\delta\)
m – WIMP mass in GeV
channel – annihilation/decay channel
- Returns:
Master function (as an interpolation function) for DM hypotheses
- diffsph.spectra.synchrotron.Mst_pw(eta, Gamma, delta)¶
Master function for the generic power-law hypothesis
- Parameters:
eta – \(\eta\)
Gamma – \(\Gamma\)
delta – \(\delta\)
- Returns:
Master function (as an interpolation function) for the generic power-law hypothesis
- diffsph.spectra.synchrotron.X(nu, tau, delta, B, hyp, **kwargs)¶
Spectral function in erg/GHz for all hypotheses built in diffsph
- Parameters:
nu – frequency in GHz
tau – diffusion time-scale parameter for a 1 GeV CRE in s
delta – power-law exponent of the diffusion coefficient as a function of the CRE’s energy
B – magnitude of the magnetic field’s smooth component in \(\mu\)G
hyp (str) – hypothesis:
'wimp'
,'decay'
or'generic'
Keyword arguments:
If
hyp = 'wimp'
or'decay'
- Parameters:
mchi – mass of the DM particle in GeV/\(c^2\)
channel (str) – annihilation/decay channel: \(b\bar b\) (
'bb'
), \(\mu^+ \mu^-\) ('mumu'
), \(W^+ W^-\) ('WW'
), etc.
If
hyp = 'generic'
- Parameters:
Gamma – power-law exponent of the generic CRE source (\(1.1 < \Gamma < 3\))
- Returns:
spectral function in erg/GHz
- diffsph.spectra.synchrotron.X_DM(k, mchi, channel, nu, tau, delta, B)¶
Spectral function in erg/GHz for all DM hypotheses built in diffsph
- Parameters:
k – hypothesis index (k=1 for decay and k=2 for annihilation)
mchi – mass of the DM particle in GeV/\(c^2\)
channel – annihilation/decay channel: \(b\bar b\) (
'bb'
), \(\mu^+ \mu^-\) ('mumu'
), \(W^+ W^-\) ('WW'
), etc.nu – frequency in GHz
tau – diffusion time-scale parameter for a 1 GeV CRE in s
delta – power-law exponent of the diffusion coefficient as a function of the CRE’s energy
B – magnitude of the magnetic field’s smooth component in \(\mu\)G
- Returns:
spectral function in erg/GHz
- diffsph.spectra.synchrotron.X_gen(Emin, Emax, S_func, nu, tau, delta, B)¶
Spectral function in erg/GHz for generic CRE sources
\[X_\text{gen}(\nu) = \int_{E_m}^{E_M}dE'\hat X(\nu, E')S(E')\]- Parameters:
Emin – low-E cutoff energy in GeV of the CRE source
'S_func'
Emax – high-E cutoff energy in GeV of the CRE source
'S_func'
S_func – CRE source function
nu – frequency in GHz
tau – diffusion time-scale parameter for a 1 GeV CRE in s
delta – power-law exponent of the diffusion coefficient as a function of the CRE’s energy
B – magnitude of the magnetic field’s smooth component in \(\mu\)G
- Returns:
spectral function in erg/GHz
- diffsph.spectra.synchrotron.X_pw(Gamma, nu, tau, delta, B)¶
Spectral function in erg/GHz for the generic power-law hypothesis
- Parameters:
Gamma – power-law exponent of the generic CRE source (\(1.1 < \Gamma < 3\))
nu – frequency in GHz
tau – diffusion time-scale parameter for a 1 GeV CRE in s
delta – power-law exponent of the diffusion coefficient as a function of the CRE’s energy
B – magnitude of the magnetic field’s smooth component in \(\mu\)G
- Returns:
spectral function in erg/GHz
- diffsph.spectra.synchrotron.eta(E, B, tau, delta)¶
\(\eta\) variable as a function of the CRE’s energy, magnetic field, tau and delta parameters
- Parameters:
E – CRE energy in GeV
B – magnetic field strength in µG
tau – diffusion time-scale parameter for a 1 GeV CRE in s
delta – power-law exponent of the diffusion coefficient as a function of the CRE’s energy
- Returns:
\(\eta\) variable
- diffsph.spectra.synchrotron.htX(E, nu, tau, delta, B, fast_comp=True)¶
Spectral function kernel in erg/GHz \(\hat X\)
- Parameters:
E – CRE energy in GeV
nu – frequency in GHz
tau – diffusion time-scale parameter for a 1 GeV CRE in s
delta – power-law exponent of the diffusion coefficient as a function of the CRE’s energy
B – magnitude of the magnetic field’s smooth component in \(\mu\)G
fast_comp (bool) – if
'True'
, employs the interpolating method (default value ='True'
)
- Returns:
spectral kernel in erg/GHz
- diffsph.spectra.synchrotron.lMst(Lxi, Leta, delta)¶
Interpolation function for (kernel) \(\log(\hat{\mathcal M})\)
- Parameters:
Lxi – \(\log(\xi)\)
Leta – \(\log(\eta)\)
delta – \(\delta\)
- Returns:
\(\log(\hat{\mathcal M})\) as a function of \(\log(\xi)\), \(\log(\eta)\) and \(\delta\)
- diffsph.spectra.synchrotron.lMst_DM(Lxi, Leta, Lm, delta, channel)¶
Interpolation function \(\log(\mathcal M)\) for DM hypotheses
- Parameters:
Lxi – \(\log(\xi)\)
Leta – \(\log(\eta)\)
Lm – \(\log(m/\text{GeV})\) (\(m\) is the WIMP mass)
delta – \(\delta\)
channel – annihilation/decay channel
- Returns:
\(\log(\mathcal M)\) as a function of \(\log(\xi)\), \(\log(\eta)\), \(\log(m)\) and \(\delta\)
- diffsph.spectra.synchrotron.lMst_pw(Leta, Gamma, delta)¶
Interpolation function \(\log(\mathcal M)\) for the gereric power-law hypothesis
- Parameters:
Leta – \(\log(\eta)\)
Gamma – \(\Gamma\)
delta – \(\delta\)
- Returns:
\(\log(\mathcal M_\text{gen})\) as a function of \(\log(\eta)\), \(\Gamma\) and \(\delta\)